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1 What is Machine Learning?

Two definitions of Machine Learning are offered. Arthur Samuel described

it as: ”the field of study that gives computers the ability to learn without being

explicitly programmed.” This is an older, informal definition.

Tom Mitchell provides a more modern definition: ”A computer program

is said to learn from experience E with respect to some class of tasks T and

1



2 SUPERVISED LEARNING

performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E.”

Example: playing checkers.

E = the experience of playing many games of checkers

T = the task of playing checkers.

P = the probability that the program will win the next game.

In general, any machine learning problem can be assigned to one of two

broad classifications:

Supervised learning and Unsupervised learning.

2 Supervised Learning

In supervised learning, we are given a data set and already know what

our correct output should look like, having the idea that there is a relationship

between the input and the output.

Supervised learning problems are categorized into ”regression” and ”clas-

sification” problems. In a regression problem, we are trying to predict results

within a continuous output, meaning that we are trying to map input variables

to some continuous function. In a classification problem, we are instead trying

to predict results in a discrete output. In other words, we are trying to map

input variables into discrete categories.

Example 1:

Given data about the size of houses on the real estate market, try to predict

their price. Price as a function of size is a continuous output, so this is a

regression problem.

We could turn this example into a classification problem by instead making

our output about whether the house ”sells for more or less than the asking price.”

Here we are classifying the houses based on price into two discrete categories.

Example 2:

(a) Regression - Given a picture of a person, we have to predict their age

on the basis of the given picture

(b) Classification - Given a patient with a tumor, we have to predict whether

the tumor is malignant or benign.
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4 MODEL REPRESENTATION

3 Unsupervised Learning

Unsupervised learning allows us to approach problems with little or no idea

what our results should look like. We can derive structure from data where we

don’t necessarily know the effect of the variables.

We can derive this structure by clustering the data based on relationships

among the variables in the data.

With unsupervised learning there is no feedback based on the prediction

results.

Example:

Clustering: Take a collection of 1,000,000 different genes, and find a way to

automatically group these genes into groups that are somehow similar or related

by different variables, such as lifespan, location, roles, and so on.

Non-clustering: The ”Cocktail Party Algorithm”, allows you to find struc-

ture in a chaotic environment. (i.e. identifying individual voices and music from

a mesh of sounds at a cocktail party).

4 Model Representation

To establish notation for future use, we’ll use x(i) to denote the“input”

variables (living area in this example), also called input features, and y(i) to

denote the “output” or target variable that we are trying to predict (price).

A pair (x(i), y(i)) is called a training example, and the dataset that we’ll be

using to learn—a list of m training examples (x(i), y(i)); i = 1, ...,m—is called

a training set. Note that the superscript “(i)” in the notation is simply an

index into the training set, and has nothing to do with exponentiation. We will

also use X to denote the space of input values, and Y to denote the space of

output values. In this example, X = Y = R.

To describe the supervised learning problem slightly more formally, our

goal is, given a training set, to learn a functionh : X → Y so that h(x) is a

“good” predictor for the corresponding value of y. For historical reasons, this

function h is called a hypothesis. Seen pictorially, the process is therefore like

this:
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5 COST FUNCTION

When the target variable that we’re trying to predict is continuous, such

as in our housing example, we call the learning problem a regression problem.

When y can take on only a small number of discrete values (such as if, given

the living area, we wanted to predict if a dwelling is a house or an apartment,

say), we call it a classification problem.

5 Cost Function

We can measure the accuracy of our hypothesis function by using a cost

function. This takes an average difference (actually a fancier version of an

average) of all the results of the hypothesis with inputs from x’s and the actual

output y’s.

J(θ0, θ1) =
1

2m

m∑
i=1

(ŷi − yi)2 =
1

2m

m∑
i=1

(hθ(xi)− yi)2 (5.1)

To break it apart, it is 1
2 x̃ where x̃ is the mean of the squares of hθ(xi)−yi,
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6 COST FUNCTION - INTUITION I

or the difference between the predicted value and the actual value.

This function is otherwise called the ”Squared error function”, or ”Mean

squared error”. The mean is havled as a convenience for the computation of the

gradient decent, as the derivative term of the square function will cancel out

the 1
2 term. The following image summarizes what the cost function does:

6 Cost Function - Intuition I

If we try to think of it in visual terms, our training data set is scattered on

the x-y plane. We are trying to make a straight line (defined by hθ(x) ) which

passes through these scattered data points.

Our objective is to get the best possible line. The best possible line will be

such so that the average squared vertical distances of the scattered points from

the line will be the least. Ideally, the line should pass through all the points

of our training data set. In such a case, the value of J(θ0, θ1) will be 0. The

following example shows the ideal situation where we have a cost function of 0.
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6 COST FUNCTION - INTUITION I

when θ1 = 1, we get a slope of 1 which goes through every single data point

in our model. Conversely, when θ = 0.5, we see the vertical distance from our

fit to the data points increase.

This increases our cost function to 0.58. Plotting several other points yields

to the following graph:
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7 COST FUNCTION - INTUITION II

Thus as a goal, we should try to minimize the cost function. In this case,

θ1 = 1 is our global minimum.

7 Cost Function - Intuition II

A contour plot is a graph that contains many contour lines. A contour line

of a two variable function has a constant value at all points of the same line.

An example of such a graph is the one to the right below.
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7 COST FUNCTION - INTUITION II

Taking any color and going along the ’circle’, one would expect to get the

same value of the cost function. For example, the three green points found on

the green line above have the same value for J(θ0, θ1) and as a result, they are

found along the same line. The circled x displays the value of the cost function

for the graph on the left when θ0 = 800 and θ1 = −0.15. Taking another h(x)

and plotting its contour plot, one gets the following graphs:

Whenθ0 = 360, θ1 = 0, the value of J(θ0, θ1) in the contour plot gets closer

to the center thus reducing the cost function error. Now giving our hypothesis

function a slightly positive slope results in a better fit of the data.
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8 GRADIENT DESCENT

The graph above minimizes the cost function as much as possible and con-

sequently, the result of θ1 and θ0 tend to be around 0.12 and 250 respectively.

Plotting those values on our graph to the right seems to put our point in the

center of the inner most ’circle’.

8 Gradient Descent

So we have our hypothesis function and we have a way of measuring how

well it fits into the data. Now we need to estimate the parameters in the

hypothesis function. That’s where gradient descent comes in.

Imagine that we graph our hypothesis function based on its fields θ0 and

θ1 (actually we are graphing the cost function as a function of the parameter

estimates). We are not graphing x and y itself, but the parameter range of

our hypothesis function and the cost resulting from selecting a particular set of

parameters.

We put θ0 on the x axis andθ1 on the y axis, with the cost function on the

vertical z axis. The points on our graph will be the result of the cost function

using our hypothesis with those specific theta parameters. The graph below

depicts such a setup.
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8 GRADIENT DESCENT

We will know that we have succeeded when our cost function is at the very

bottom of the pits in our graph, i.e. when its value is the minimum. The red

arrows show the minimum points in the graph.

The way we do this is by taking the derivative (the tangential line to a

function) of our cost function. The slope of the tangent is the derivative at that

point and it will give us a direction to move towards. We make steps down the

cost function in the direction with the steepest descent. The size of each step

is determined by the parameter α, which is called the learning rate.

For example, the distance between each ’star’ in the graph above represents

a step determined by our parameter α. A smaller α would result in a smaller

step and a larger α results in a larger step. The direction in which the step is

taken is determined by the partial derivative of J(θ0, θ1). Depending on where

one starts on the graph, one could end up at different points. The image above

shows us two different starting points that end up in two different places.

The gradient descent algorithm is:

repeat until convergence:

θj := θj − α
∂

∂θj
J(θ0, θ1) (8.1)

where

j = 0, 1 represents the feature index number.

At each iteration j, one should simultaneously update the parameters

θ1, θ2, . . . , θn. Updating a specific parameter prior to calculating another one

on the j(th) iteration would yield to a wrong implementation.
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9 GRADIENT DESCENT INTUITION

9 Gradient Descent Intuition

In this video we explored the scenario where we used one parameter θ1 and

plotted its cost function to implement a gradient descent. Our formula for a

single parameter was :

Repeat until convergence:

θ1 := θ1 − α
d

dθ1
J(θ1) (9.1)

Regardless of the slope’s sign for ∂J(θ1)
∂θ1

, θ1 eventually converges to its

minimum value. The following graph shows that when the slope is negative, the

value ofθ1 increases and when it is positive, the value of θ1 decreases.

On a side note, we should adjust our parameter α to ensure that the gra-

dient descent algorithm converges in a reasonable time. Failure to converge or

too much time to obtain the minimum value imply that our step size is wrong.
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10 GRADIENT DESCENT FOR LINEAR REGRESSION

How does gradient descent converge with a fixed step size α?

The intuition behind the convergence is that ∂J(θ1)
∂θ1

approaches 0 as we

approach the bottom of our convex function. At the minimum, the derivative

will always be 0 and thus we get:

θ1 := θ1 − α ∗ 0 (9.2)

10 Gradient Descent For Linear Regression

When specifically applied to the case of linear regression, a new form of the

gradient descent equation can be derived. We can substitute our actual cost

function and our actual hypothesis function and modify the equation to :
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10 GRADIENT DESCENT FOR LINEAR REGRESSION

repeat until convergence: {

θ0 :=θ0 − α
1

m

m∑
i=1

(hθ(xi)− yi)

θ1 :=θ1 − α
1

m

m∑
i=1

((hθ(xi)− yi)xi)

}

here m is the size of the training set, θ0 a constant that will be changing

simultaneously with θ1 and xi, yiare values of the given training set (data).

Note that we have separated out the two cases for θj into separate equations

for θ0 and θ1; and that for θ1 we are multiplying xi at the end due to the

derivative. The following is a derivation of ∂J(θ)
∂θj

for a single example :

∂J(θ)

∂θj
=

∂

∂θj

1

2
(hθ(x)− y)2

= (hθ(x)− y)
∂

∂θj
(hθ(x)− y)

= (hθ(x)− y)
∂

∂θj
(

m∑
i=1

θixi − y)

= (hθ(x)− y)xj

The point of all this is that if we start with a guess for our hypothesis

and then repeatedly apply these gradient descent equations, our hypothesis will

become more and more accurate.

So, this is simply gradient descent on the original cost function J . This

method looks at every example in the entire training set on every step, and is

called batch gradient descent. Note that, while gradient descent can be suscepti-

ble to local minima in general, the optimization problem we have posed here for

linear regression has only one global, and no other local, optima; thus gradient

descent always converges (assuming the learning rate α is not too large) to the

global minimum. Indeed, J is a convex quadratic function. Here is an example

of gradient descent as it is run to minimize a quadratic function.
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10 GRADIENT DESCENT FOR LINEAR REGRESSION

The ellipses shown above are the contours of a quadratic function. Also

shown is the trajectory taken by gradient descent, which was initialized at

(48,30). The x’s in the figure (joined by straight lines) mark the successive

values of θ that gradient descent went through as it converged to its minimum.
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